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Studies on the theory of model predicti®e control include the assumption that the
(origin is in the interior of the feasible region that is, the inequality constraints are not

)acti®e at steady state . The reason for making this assumption is that without it one
cannot guarantee feasibility of the control problem on the infinite horizon because of the
finite horizon parameterization of the input with an unconstrained linear feedback law.
As demonstrated in this article, howe®er, this assumption often does not hold in prac-
tice. A strategy for handling inequality constraints acti®e at steady state is presented by
projecting the system onto the acti®e constraints under the finite horizon parameteriza-
tion of the input, as well as an algorithm for constructing the optimal linear feedback
law that constrains the system to the acti®e constraints. Feasibility is obtained using
output admissible sets. For the steady-state target calculation, we propose an algorithm
utilizing exact penalties that treats systems in a unified fashion with more inputs than
outputs and ®ice ®ersa. Assuming the system is detectable, it is pro®en that the algo-
rithm yields a unique steady-state target.

Introduction

Ž .Model Predictive Control MPC is an optimization-based
strategy that uses a plant model to predict the effect of po-
tential control action on the evolving state of the plant. At
each time step, an open-loop optimal control problem is
solved and the input profile is injected into the plant until a
new measurement becomes available. The updated plant in-
formation is used to formulate and solve a new open-loop
optimal control problem.

Since MPC is formulated as an optimization problem, in-
equality constraints are a natural addition to the controller.
The ability to handle explicitly input and output constraints
may be viewed as one of the major factors for the success of
MPC in process control. Operation at constraints is so com-
mon that it may be regarded as the rule rather than the ex-
ception in chemical process operations. Consider the classic
example of temperature control of an exothermic reactor. In
order to maximize profit, one may wish to maximize reactor
feed rate. At some feed rate, however, the cooling capacity
reaches a constraint. As disturbances occur, such as heat ex-
changer fouling, the feed rate is manipulated to maximize
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production with some safety margin, while maintaining cool-
ing capacity at its constraint. If a disturbance were to de-
crease the reactor feed temperature, however, then the cool-
ing rate would be decreased so that the reaction would not
extinguish. So, in many practical situations of this type, in-

Ž .puts cooling rate in this example are maintained at con-
straints in the normal steady-state operation. The main
objective of this article is to extend the existing MPC theory
to handle this important industrial case.

While constraints improve the appeal of MPC as an ad-
vanced control strategy, they complicate the implementation
of the controller. In addition to the computational burden,
constraints necessitate additional safeguards to guarantee that
the controller is stabilizing. One method to guarantee nomi-
nal stability is to formulate the model predictive controller

Ž .on an infinite horizon Keerthi and Gilbert, 1988 . Infinite
horizon formulations are appealing because, for the nominal
case, the predicted open-loop and the achieved closed-loop
responses are identical and the effect of tuning parameters
is, therefore, more intuitive.

In this article we focus on formulating MPC as an infinite
horizon optimal control strategy with a quadratic perfor-
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mance criterion. We use the following discrete time model of
the plant

x s Ax q B u q d , 1aŽ .Ž .jq1 j j

y sCx q p , 1bŽ .j j

where x gR n is the state vector, u gR m is the input vector,j j
and y gR q is the output vector. AgR n=n, BgR n=m, andj
CgR q=m are, respectively, the state transition matrix, the
input distribution matrix, and the measurement matrix. The
subscript jgI denotes the discrete time sampling instant.q
The affine terms dgR m and pgR q serve the purpose of
adding integral control. They may be interpreted as modeling
the effect of constant disturbances influencing the input and

Ž .output, respectively. Muske and Rawlings 1993 provide a
discussion of how to estimate p and d. Assuming that the
state of the plant is perfectly measured, we define MPC as

Ž .the feedback law u s g x that minimizesj j

`1 T
Fs y y y Q y y yŽ . Ž .Ý j j2 js 0

T Tq u yu R u yu qDu SDu , 2Ž .Ž . Ž .j j j j

Dwhere Du s u yu . The matrices Q, R, and S are as-j j jy1
sumed to be symmetric positive definite. The vector y is the
desired output target and u is the desired input target, as-
sumed for simplicity to be time-invariant. When the complete
state of the plant is not measured, as is almost always the
case, the addition of a state estimator is necessary. Since state
estimation is beyond the scope of this article, we assume that
the control and estimation problems can be separated.

The steady-state aspect of the control problem is to deter-
Ž .mine appropriate values of y , x , u satisfying the fol-ss ss ss

lowing relation

x s Ax q B u q d , 3aŽ .Ž .ss ss ss

y sCx q p. 3bŽ .ss ss

Ideally, y s y and u su. However, process limitations andss ss
constraints may prevent the system from reaching the desired
steady state. The objective of the target calculation is to find

Ž .the feasible triple y , x , u such that y and u are asss ss ss ss ss
close as possible to y and u. We address the target calcula-
tion in the next section.

To simplify the analysis and formulation, we transform Eq.
2 using deviation variables to the generic infinite horizon
quadratic criterion

`1
T T TFs z Qz q ® R® qD® SD® . 4Ž .Ý j j j j j j2 js 0

Ž .The original criterion Eq. 2 can be recovered from Eq. 4 by
making the following substitutions

z § y yCx y p , w § x y x , ® §u yu .j j ss j j ss j j ss

By using deviation variables, the steady-state and the dy-
namic elements of the control problem are treated sepa-
rately, thereby simplifying the overall analysis of the con-
troller.

ŽThe dynamic aspect of the control problem is to control y,
. Ž .x, u to the steady-state values y , x , u in the face ofss ss ss

constraints, which may be active at the steady-state operating
point. This part of the problem is discussed in the Receding
Horizon Regulator section. In particular, we determine the

Ž .state feedback law ® s r w that minimizes Eq. 4. Whenj j
there are no inequality constraints, the feedback law is the
linear quadratic regulator. However, with the addition of in-
equality constraints, there may not exist an analytic form for
Ž .r w . In such cases where an analytic solution is unavailable,j

the feedback law is obtained by repetitively solving the open-
loop optimal control problem. This strategy allows us to con-
sider only the encountered sequence of measured states
rather than the entire state space. For a further discussion,

Ž .see Mayne 1995 .
If we consider only linear constraints on the input, input

velocity, and outputs of the form

u F Du Fu , yD FDu FD , y FCx F y ,min k max u k u min k max

5Ž .

where DgR nD=m and CgR nC=q, we formulate the regula-
tor as the solution to the following infinite horizon optimal
control problem

`1
T T Tmin F x s z Qz q ® R® qD® SD® , 6Ž . Ž .Ýj k k k k k k2� 4w , ®k k k s 0

subject to the constraints

w s x y x , ® su yu ,0 j s s y1 jy1 s s

w s Aw q B® , z sCw 7aŽ .kq1 k k k k

u yu F D® Fu yu , yD FD® FD , 7bŽ .min s s k max s s u k u

y y y FCw F y y y . 7cŽ .min s s k max s s

If we denote

`U Uw x , ® x sarg min F x ,Ž . Ž . Ž .� 4kq1 j k j jk s 0

then the control law is

r x s ®U x .Ž . Ž .j 0 j

We address the regulation problem in the Receding Horizon
Regulator sections.

Combining the solution of the target tracking problem and
the constrained regulator, the MPC algorithm is defined as
follows:
Ž . Ž1 Obtain an estimate of the state and disturbances ´ x ,j
.p, d

Ž . Ž .2 Determine the steady-state target´ y , x , uss ss ss
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Ž .3 Solve the regulation problem ´ ®j
Ž .4 Let u s ® quj j ss
Ž .5 Repeat for j§ jq1

Target Calculation
When the number of the inputs equals the number of out-

puts, the solution to the unconstrained target problem is ob-
tained using the steady-state gain matrix, assuming such a

Ž .matrix exists that is, the system has no integrators . How-
ever, for systems with unequal numbers of inputs and out-
puts, integrators, or inequality constraints, the target calcula-

Žtion is formulated as a mathematical program Muske and
.Rawlings, 1993; Muske, 1997 . When there are at least as

many inputs as outputs, multiple combinations of inputs may
yield the desired output target at steady state. For such sys-
tems, a mathematical program with a least-squares objective
is formulated to determine the best combinations of inputs.
When the number of outputs is greater than the number of
inputs, situations exist in which no combination of inputs sat-
isfies the output target at steady state. For such cases, we
formulate a mathematical program that determines the
steady-state output y / y that is closest to y in a least-ss
squares sense.

Instead of solving separate problems to establish the tar-
get, we prefer to solve one problem for both situations.

Ž .Through the use of an exact penalty Fletcher, 1987 , we for-
mulate the target tracking problem as a single quadratic pro-
gram that achieves the output target if possible, and relaxes
the problem in a l rl 2 optimal sense if the target is infeasi-1 2
ble. We formulate the soft constraint

yyCx y pFh ,ss

yyCx y pGyh ,ss

hG0, 8Ž .

by relaxing the constraint Cx s y using the slack variable h.ss
By suitably penalizing h, we guarantee that the relaxed con-
straint is binding when it is feasible. We formulate the exact
soft constraint by adding an l rl 2 penalty to the objective1 2
function. The l rl 2 penalty is simply the combination of a1 2
linear penalty qT h and a quadratic penalty hTQ h, wheress ss
the elements of q are strictly non-negative and Q is ass ss
symmetric positive definite matrix. By choosing the linear
penalty sufficiently large, the soft constraint is guaranteed to
be exact. A lower bound on the elements of q to ensuress
that the original hard constraints are satisfied by the solution
cannot be calculated explicitly without knowing the solution
to the original problem, because the lower bound depends on
the optimal Lagrange multipliers for the original problem. In
theory, a conservative state-dependent upper bound for these
multipliers may be obtained by exploiting the Lipschitz con-

Ž .tinuity of the quadratic program Hager, 1979 . However, in
practice, we rarely need to guarantee that the l rl 2 penalty is1 2
exact. Rather, we use approximate values for q obtained byss
computational experience. In terms of constructing an exact
penalty, the quadratic term is superfluous. However, the
quadratic term adds an extra degree of freedom for tuning
and is necessary to guarantee uniqueness.

We now formulate the target tracking optimization as the
following quadratic program

1 TT Tmin h Q hq u yu R u yu q q h 9Ž .Ž . Ž .ss ss ss ss ss2x , u , hs s s s

subject to the constraints

x BdssIy A y B 0 s
yy pu , hG0, 10aŽ .C 0 I Gss ½ 5C 0 y I F yy ph

u F Du Fu , y FCx q pF y , 10bŽ .min s s max min s s max

where R and Q are assumed to be symmetric positive def-ss ss
inite.

Because x is not explicitly in the objective function, thess
question arises as to whether the solution to Eq. 9 is unique.
If the feasible region is nonempty, the solution exists because
the quadratic program is bounded below on the feasible re-

Ž .gion Frank and Wolfe, 1956 . If Q and R are symmetricss ss
positive definite, h and u are uniquely determined by thess
solution of the quadratic program. However, without a
quadratic penalty on x , there is no guarantee that the re-ss
sulting solution for x is unique. Nonuniqueness in thess
steady-state value of x presents potential problems for thess
controller, because the origin of the regulator is not fixed at
each sample time. Consider, for example, a tank where the

Ž .level is unmeasured that is, an unobservable integrator . The
Žsteady-state solution is to set u s0 that is, balance thess

.flows . However, any level x , within bounds, is an optimalss
alternative. Likewise, at the next time instant, a different level
also would be a suitably optimal steady-state target. The re-
sulting closed-loop performance for the system could be er-
ratic, because the controller may constantly adjust the level
of the tank, never letting the system settle to a steady state.

In order to avoid such situations, we restrict our discussion
to detectable systems, and recommend redesign if a system
does not meet this assumption. For detectable systems, the
solution to the quadratic program is unique, assuming the
feasible region is nonempty. The details of the proof are given
in Appendix A. Uniqueness is also guaranteed when only the
integrators are observable. For the practitioner, this condi-
tion translates into the requirement that all levels are mea-
sured. The reason we choose the stronger condition of de-
tectability is that if good control is desired, then the unstable
modes of the system should be observable. Detectability is
also required to guarantee nominal stability of the regulator.

Empty feasible regions are a result of the inequality con-
Ž . Žstraints Eq. 10b . Without the inequality constraints Eq.

.10b , the feasible region is nonempty, thereby guaranteeing
the existence of a feasible and unique solution under the con-

Ždition of detectability. For example, the solution u , x ,ss ss
. Ž < <.h s y d, 0, yy p is feasible. However, the addition of the

Ž .inequality constraints Eq. 10b presents the possibility of in-
feasibility. Even with well-defined constraints u -u andmin max
y - y , disturbances may render the feasible regionmin max
empty. Since the constraints on the input usually result from
physical limitations such as valve saturation, relaxing only the
output constraints is one possibility to circumvent infeasibili-
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ties. Assuming that u Fy dFu , the feasible region ismin max
always nonempty. However, we content that the output con-
straints should not be relaxed in the target calculation.
Rather, an infeasible solution, readily determined during the
initial phase in the solution of the quadratic program, should
be used as an indicator of a process exception. While relaxing
the output constraints in the dynamic regulator is common

Žpractice Ricker et al., 1988; Genceli and Nikolaou, 1993; de
Oliveira and Biegler, 1994; Zheng and Morari, 1995; Scokaert

.and Rawlings, 1996, 1997 , the output constraint violations
are transient. By relaxing output constraints in the target cal-
culation on the other hand, the controller seeks a steady-state
target that continuously violates the output constraints. The
steady violation indicates that the controller is unable to
compensate adequately for the disturbance and, therefore,
should indicate a process exception.

Receding Horizon Regulator
Because our implementation of dynamic control in the

presence of active steady-state constraints employs an infinite
horizon, the solution to infinite horizon problems is briefly
discussed.

Infinite horizon optimal control problem
Given the calculated steady state, we formulate the regula-

tor as the following infinite horizon optimal control problem

`1
T T T Tmin F x s w C QCw q ® R® qD® SD® ,Ž . Ýj k k k k k k2� 4w , ®k k k s 0

11Ž .

subject to the constraints

w s x y x , ® su yu , w s Aw q B® ,0 j s s y1 jy1 s s kq1 k k

12aŽ .

u yu F D® Fu yu , yD FD® FD , 12bŽ .min s s k max s s u k u

y y y FCw F y y y . 12cŽ .min s s k max s s

We assume that Q and R are symmetric positive definite ma-
Ž . Ž .trices. We also assume that the origin w , ® s 0, 0 is anj j

Ž � <element of the feasible region W=V Ws w y y y FCwmin s s
4 � <F y y y , Vs ® u F D® F u , yD y u F D® Fmax s s min max u ss

4. Ž .D y u . If the pair A, B is stabilizable, the pairu ss
Ž 1r2 .A, Q C is detectable, and a solution exists to Eqs. 11]12,
then x s0 is an exponentially stable fixed point of thej

Ž .closed-loop system Scokaert and Rawlings, 1996 .
For unstable state transition matrices, the direct solution

of Eqs. 11]12 is ill-conditioned, because the system dynamics
are propagated through the unstable A matrix. To improve
the conditioning of the optimization, we reparameterize the
input as ® s Lw q r , where L is a linear stabilizing feed-k k k

Ž . Ž .back gain for A, B Keerthi, 1986; Rossiter et al., 1997 .
The system model becomes

w s Aq BL w q Br , 13Ž . Ž .kq1 k k

where r is the new input. By initially specifying a stabilizing,k
potentially infeasible, trajectory, we can improve the numeri-
cal conditioning of the optimization by propagating the sys-

Ž .tem dynamics through the stable Aq BL matrix.
By expanding D® and substituting in for ® , we transformk k

Eqs. 11]12 into the following more tractable form

`1
T T Tmin F x s w Qw q ® R® q2w M® , 14Ž . Ž .Ž .Ýj k k k k k k2� 4w , ®k k k s 0

subject to the following constraints

w s x , w s Aw q B® , 15aŽ .0 j kq1 k k

d F D® yGw F d , y y y FCw F y y y .min k k max min s s k max s s

15bŽ .

Ž .The original formulation Eqs. 11]12 can be recovered from
Eqs. 14]15 by making the following substitutions into the
second formulation

x y x wj ss k
x § , w § , ® § r ,j k k ku yu ®jy1 s s ky1

Aq BL 0 BA§ , B§ ,
L 0 I

T T T TC QCq L RqS L y L S L RqSŽ . Ž .Q§ , M§ ,
ySL S yS

D y DL 0R§ RqS, D§ , G§ ,
I y L I

u yu u yumax s s min s s w xd § , d § , C§ C 0 .max minD yDu u

Ž .While the formulation Eqs. 14]15 is theoretically appeal-
ing, the solution is intractable in its current form, because it
is necessary to consider an infinite number of decision vari-
ables. In order to obtain a computationally tractable formula-
tion, we reformulate the optimization in a finite dimensional
decision space.

Several authors have considered this problem in various
forms. In this article, we concentrate on the constrainted lin-

Žear quadratic methods proposed in the literature Keerthi,
1986; Sznaier and Damborg, 1987; Chmielewski and

.Manousiouthakis, 1996; Scokaert and Rawlings, 1996, 1998 .
The key concept behind these methods is to recognize that
the inequality constraints remain active only for a finite num-
ber of sample steps along the prediction horizon. We demon-
strate informally this concept as follows: if we assume that
there exists a feasible solution to Eqs. 14 and 15, then the

� 4̀state and input trajectories w , ® approach the origink k ks0
exponentially. Furthermore, if we assume the origin is con-

Žtained within the interior of the feasible region W=V we
address the case where the origin lies on the boundary of the

.feasible region in the next section , then there exists a posi-
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Ž .tively invariant convex set Gilbert and Tan, 1991

j<OO s w Aq BK wgW , ; jG0 16Ž . Ž .� 4` K

such that the optimal unconstrained feedback law ®s Kw is
feasible for all future time. The set W is the feasible regionK

Žprojected onto the state space by the linear control K that
� <Ž . 4.is, W s w w, Kw gW=V . Because the state and inputK

trajectories approach the origin exponentially, there exists a
U � 4̀ Ufinite N such that the state trajectory w is containedk ksN

in OO .`

ŽIn order to guarantee that the inequality constraints Eq.
. U15b are satisfied on the infinite horizon, N must be chosen

such that w U g OO . Since the value of NU depends on x ,N ` j
we need to account for the variable decision horizon length
in the optimization. We formulate the variable horizon length
regulator as the following optimization

N y11
T T Tmin F x s w Qw q ® R® q2w M®Ž . Ž .Ýj k k k k k k2� 4w , ® , Nk k k s 0

1
Tq w Pw , 17Ž .N N2

subject to the constraints

w s x , w s Aw q B® , 18aŽ .0 j kq1 k k

d F D® yGw F d , y y y FCw F y y y ,min k k max min s s k max s s

18bŽ .

w g OO . 18cŽ .N `

The cost to go P is determined from the discrete-time alge-
braic Riccati equation

Ps AT P AqQ

y1T T T Ty A P Bq M Rq B P B B P Aq M , 19Ž .Ž . Ž . Ž .

for which many reliable solution algorithms exist. The vari-
able horizon formulation is similar to the dual-mode receding

Ž .horizon controller Michalska and Mayne, 1993 for a nonlin-
ear system with the linear quadratic regulator chosen as the
stabilizing linear controller.

Ž .While the problem Eqs. 17]18 is formulated on a finite
horizon, the solution cannot, in general, be obtained in real
time since the problem is a mixed-integer program. Rather
than try to directly solve Eqs. 17]18, we address the problem
of determining NU from a variety of semi-implicit schemes,
while maintaining the quadratic programming structure in the
subsequent optimizations.

Ž .Gilbert and Tan 1991 show that there exist a finite num-
ber tU such that OO U is equivalent to the maximal OO , wheret `

j<OO s w Aq BK wgW , for js0, . . . , t . 20Ž . Ž .� 4t K

They also present an algorithm for determining tU that is
formulated efficiently as a finite number of linear programs.

Their method provides an easy check whether, for a fixed N,
Ž .the solution to Eqs. 17]18 is feasible that is, w g OO . TheN `

check consists of determining whether state and input trajec-
tories generated by unconstrained control law ® s Kw fromk k
the initial condition w are feasible with respect to inequalityN
constraints for tU time steps in the future. If the check fails,

Ž .then the optimization Eqs. 17]18 needs to be resolved with
a longer control horizon N X ) N since w f OO . The processN `

is repeated until w X g OO .N `

� 4When the set of initial conditions w is compact,0
Ž .Chmielewski and Manousiouthakis 1996 present a method

Ufor calculating an upper bound N on N using boundary
arguments on the optimal cost function FU. Given a set Ps
� 1 m4x , . . . , x of initial conditions, the optimal cost function

UŽ . Ž .F x is a convex function defined on the convex hull co of
UŽ . Ž .P. An upper bound F x on the optimal cost F x for xg

Ž .co P is obtained by the corresponding convex combinations
UŽ j. jof optimal cost functions F x for x gP. The upper bound

on NU is obtained by recognizing that the state trajectory wj
only remains outside of OO for a finite number of stages. A`

lower bound q on the cost of wTQw can be generated forj j
w Ž .x f OO see Chmielewski and Manousiouthakis 1996 for ex-j `

Ux Ž .plicit details . It then follows that N FF x rq. Further re-
finement of the upper bound can be obtained by including
the terminal stage penalty P in the analysis.

When a bound on the initial conditions w is known a pri-0
ori, the Chmielewski and Manousiouthakis method is appeal-
ing, because one need not iteratively determine NU on-line.
However, generating this bound a priori requires significant
process knowledge. Changing operating conditions and dis-
turbances may lead to initial conditions that violate any pre-
viously specified bound. In such cases, we again need to de-
termine NU on-line. Furthermore, the decision of how to
construct the basis for P is complicated, since the number of
points increases exponentially in higher dimensions. Even
when a bound is available and a logical basis is constructed,
the upper bounds are often conservative, as demonstrated in
the following example.

Example 1. Comparison of On-line and Off-line Determina-
tion of NU. Consider the regulation of the following double
integrator system

x s x , 21aŽ .1̇ 2

x su , 21bŽ .2̇

sampled at a frequency of 10 Hz with ys x and the input1
< <constraint u F1. For Qs1, Rs1, Ss0, and the initial

w xT Ucondition, x s 1 1 . For this initial condition, N s13 was0
required to guarantee that the constraints are satisfied on the
infinite horizon.

The Chmielewski and Manousiouthakis method generates
a least upper bound of 361 for NU. This value was deter-

w xTmined using the true infinite horizon cost for x s 1 1 . In0
practice, only an upper bound on the cost is available for the
infinite horizon cost, so the upper bound on NU is often
greater than the least upper bound for NU. We can compare
these results with the repetitive strategy where N is in-
creased until w g OO . Since there exist algorithms whoseN `

Ž . Ž .computational cost is O N Rao et al., 1998 , we can expect
that the computational cost is approximately a linear function

June 1999 Vol. 45, No. 6 AIChE Journal1270



of N. If Ns1 initially and the control horizon is increased
by unit steps, then the total computational cost is approxi-
mately 91=C, where C is the computational cost required
solve the optimization for Ns1. If we increase the horizon
geometrically with a factor of 2, as advocated by Scokaert

Ž .and Rawlings 1998 , then the total computational cost is ap-
proximately 31=C. In practice, larger initial values of N are
used. A good heuristic is to choose initially Ns tU. For this
example, tU s15. As the example demonstrates, the on-line
determination is significantly less computationally expensive
than the off-line determination. Furthermore, for the on-line
determination, we can bound the computational cost by 4NU

=C, for this example 52=C, when we increase the horizon
Ž .geometrically with a factor of 2 Scokaert and Rawlings, 1998 .

With the off-line determination, we have no bounds on the
Ž .computational cost other than it is finite , and, as the exam-

ple demonstrates, a computational effort an order of magni-
tude greater than required is possible. Therefore, we suggest
the use of the iterative, on-line determination for NU.

Boundary solutions and suboptimal approximations
All articles on constrained linear MPC include the assump-

tion that the origin lies in the interior of the feasible region
ŽKeerthi and Gilbert, 1988; Sznaier and Damborg, 1987;
Rawlings and Muske, 1993; Chmielewski and Manousiou-

.thakis, 1996; Scokaert and Rawlings, 1996 . However, as the
Target Calculation section indicates, this assumption is often
violated. In practice, one often encounters situations in which
a valve saturates or a control variable rides at a performance
constraint during steady-state operation. In these situations,
the origin is on the boundary of the feasible region. Table 1
lists all of the examples that are discussed in this article and
summarizes the main points illustrated with each example.
Consider the following example.

Example 2. Saturating Inputs at Steady State. Prett and
Ž .Morari 1987 presented the following model

y27s y28 s y27s4.05e 1.77e 5.88e

50 sq1 60 sq1 50 sq1
y18 s y14 s y15s5.39e 5.72 e 6.90 e

G s s 22Ž . Ž .
50 sq1 60 sq1 40 sq1

y20 s y22 s4.38e 4.42 e 7.20

33sq1 44 sq1 19sq1

Table 1. Brief Synopsis of Examples

Example Description
U1 A comparison of methods for calculating N in solving

infinite horizon problems
2 Steady-state inputs on boundary for Shell problem
3 Steady-state outputs on boundary for Furnace problem
4 Example of system whose input never settles on constraint

or remains in interior of feasible region
5 Simple numerical example of input constrained regulator
5 Dynamic response of Shell problem subject to set point

change
6 Dynamic response of Shell problem subject to disturbance
7 Example of output constrained regulator: endpoint

constraint necessary
8 Example of output constrained regulator: boundary

solution

for a heavy oil fractionator as the benchmark process for the
Shell standard control problem. The three inputs of the proc-
ess represent the product draw rate from the top of the col-

Ž .umn u , the product draw rate from the side of the column1
Ž .u , and the reflux heat duty for the bottom of the column2
Ž .u . The three outputs of the process represent the draw3

Ž .composition y from the top of the column, the draw com-1
Ž .position y from the side of the column, and the reflux tem-2

Ž .perature at the bottom of the column y . Prett and Garcia3
also present the following disturbance model

y27s y27s1.20 e 1.44 e

45sq1 40 sq1
y15s y15s1.52 e 1.83e

G s s 23Ž . Ž .d
25sq1 20 sq1

1.14 1.26

27sq1 32 sq1

for the heavy oil fractionator. The two disturbances are the
reflux heat duty for the intermediate section of the column
Ž . Ž .d and the reflux heat duty for the top of the column d .1 2
Both models were sampled with a period of 4 min.

The inputs are constrained betweeny0.5 and 0.5. An input
velocity constraint of 0.20 is also imposed. In addition to con-
straints on the inputs, the outputs are constrained between
y0.5 and 0.5. The following tuning parameters were chosen:
Ž . Ž .Q Q s I and R R s I.ss ss
Since the origin is shifted by the steady-state target calcu-

lation, output target changes and measured disturbances may
force the origin to lie on the boundary of the feasible region.
An example of an output target change that causes the inputs
to saturate at steady state is

0.3 0.5 0.3
ys ´u s , y s . 24Ž .0.3 y0.1 0.3ss ss

y0.3 y0.26 y0.15

Ž .Note that since the input u saturates, the system is unable1
Ž .to attain the desired target that is, y/ y . Figure 1 illus-ss

trates how the input constraints constrain the attainable re-
gion of the output space. Likewise, an example of a step
disturbance d that causes the inputs to saturate at steadystep
state is

y0.50.6d s ´u s . 25Ž .0.04step s s0.5 0.09

Steady-state outputs at performance constraints are a conse-
quence of choosing an output target at "0.5 or choosing an
infeasible target.

Example 3. Constrained Outputs at Steady State. Consider
the control of a furnace depicted in Figure 2, where the ob-
jective is to preheat the feed to a desired output tempera-
ture. The input variable is the fuel-gas flow rate. In addition
to the input constraint caused by valve saturation, there is a
maximum limit for the furnace temperature in order to pre-
vent the furnace tubes from melting. While temporary viola-
tions of the constraint are tolerable, long-term violations are
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Figure 1. Limiting effect of the input constraints on the
ability to attain the desired output target for
Example 2.
The vector u denotes the unconstrained input required toss
achieve the target y.

not. If we assume that the heating tube temperature and the
heat transfer are linear functions of the fuel-gas flow rate,
then a simplified, steady-state energy balance neglecting heat
loss yields the following dimensionless model for the furnace
system

y s a u , 26aŽ .1

y s b uq d , 26bŽ .2

in which y is the heating tube temperature, y is the outlet1 2
temperature, d is the inlet temperature, and u is the fuel-gas

Figure 2. Preheater furnace.

Figure 3. Inability of the outlet temperature to reach the
desired steady-state target due to the tube
temperature constraint in Example 3.

flow rate. For simplicity, we scale the variable such that a s
wb s1. Assume nominal conditions are us8, ds5, and ys 8

xT13 , and the maximum limit for the furnace temperature is
y F10. Suppose that there is an upstream disturbance that1
causes the inlet temperature to drop to ds2. To compen-
sate for the disturbance, the fuel-gas flow rate would have to

Ž .increase to 11 for the output temperature y to remain at2
its target. However, the furnace temperature constraint would
allow the flow rate to increase only to 10. The resulting
steady-state output obtained with Q s1, R s1, q s100,ss ss ss

Tw xand us0 is y s 10 12 , which lies on the boundary of thess
feasible region. Figure 3 depicts the effect of the disturbance
on the attainable region of the output space.

These situations complicate the formulation of the infinite
horizon optimization, because OO does not exist for all such`

systems controlled with the unconstrained optimal feedback
regulator. Figure 4 displays some of the potential input and
state trajectory characteristics that are possible when the ori-
gin lies on the boundary of the feasible region.

An example of a system that displays the first characteristic
is a stable first-order system with initial conditions in the in-
terior of the feasible region. An example of a system display-
ing the second characteristic is given in the following exam-
ple.

Example 4. A System Where the Control does not Become
Permanently Acti®e or Inacti®e on the Constraint. Consider the
following system

0.5477 0.8208 0 0
w s w , q ® , 27aŽ .y0.8208 0.5067 0 0kq1 k k

0 0 0.8 1

w xy s 1 0 1 w , 27bŽ .k k

subject to the input constraint ® F0. Figure 5 details thek
woptimal input profile subject to the initial disturbance w s 30

xT3 0 with tuning parameters Qs1 and Rs1. While the in-
Ž .put trajectory converges toward the origin see Figure 5 , nu-
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Figure 4. Some potential input and state trajectories
when the origin is on the boundary of the fea-
sible region.
To prevent problems associated with trajectories 1 and 2,
the proposed algorithm forces the closed-loop response to
adhere to a trajectory similar to 3.

merical calculations indicate that the input does not become
active on the constraint or stay strictly in the interior of the
feasible region.

Examples of systems displaying the third characteristic are
given in Examples 7 and 8. While the first trajectory offers
the possibility of constructing OO , for the second and third`

trajectory we are unable to construct OO with a finite number`

of inequality constraints because the constraints remains ac-
tive for infinite time. Each of the possibilities could be han-
dled individually. However, the task of segregating their be-
havior a priori is difficult. To circumvent this problem, we

Figure 5. Input trajectory for Example 4.

approximate Eqs. 17]18 by restricting the evolution of the
input and state trajectories generated by the linear control
law to the null space of the active constraints at the origin.
This suboptimal strategy coincides with forcing the state and
input trajectories to adhere to the third path depicted in Fig-
ure 4. By forcing the trajectory of system onto the constraints
active at the origin, we guarantee the existence of an OO ,`

because the invariant set needs to account only for the con-
straints inactive at the origin. The constraints active at the
origin are feasible by construction.

We accomplish the boundary approximation by construct-
ing the optimal linear feedback law K that constrains evolu-
tion of the closed-loop system to constraints active at the ori-
gin. The set OO is constructed as before with the following`

differences: the new linear control law is K and the inequal-
ity constraints active at the origin are discarded. The infinite
horizon regulator is constructed as the solution of Eqs. 17]18
with the new OO and the cost to go P associated with K. We`

treat the situation of input and state constraints separately.
Acti®e Input Constraints. We recast the problem for han-

dling input constraints active at the origin as finding the lin-
ear feedback controller that minimizes the infinite horizon

Ž .quadratic objective Eq. 14 subject to the equality con-
Žstraints it is not necessary to account for G because the ve-

.locity constraints are not active at steady state

w s Aw q B® , 28aŽ .kq1 k k

D® s0, 28bŽ .k

where the overbar denotes the subset of the inequality con-
straints d F D® F d that are active at the origin. Themin k max

n =mDmatrix DgR , where n is equal to the number ofD
inputs with constraints active at the origin. The state depend-
ence of the input constraints due to Eq. 13 can be reformu-
lated solely in terms of the input ® by removing the parame-k
terization ® s Lw q r for kG N. We derive the linear op-k k k
timal controller as follows. We first define the operator

KK: A , B , Q, R , M ™ K , P , 29Ž . Ž . Ž .

June 1999 Vol. 45, No. 6AIChE Journal 1273



where K is the linear gain for the optimal unconstrained reg-
ulator and P is the solution to the associated Riccati equa-
tion. If we let NN be an orthonormal basis for the null spaceD

TDof D, then p s NN ® represents the input projected to thek D k
null space NN . Because the equality constraint is feasible forD

Dall p , we can substitute for ® in the state equation and thek k
objective function yielding the following expression

TK , P s KK A , BNN , Q, NN R NN , MNN 30Ž .Ž . Ž .D D D D D

Ž .for the solution of the constrained feedback law. If A, BNND
is stabilizable, then

DK s NN K . 31Ž .D D

Ž .If A, BNN is not stabilizable, we need to zero the modes ofD
the system that are both uncontrollable and unstable at ks
NU in order to guarantee nominal stability. By first perform-
ing a Kalman decomposition to construct a basis for the un-
controllable subspace, a basis for the corresponding uncon-
trollable and unstable modes is constructed using either a
Jordan or a Schur decomposition. We remark that if D is full
rank, then it is necessary to zero the inputs at the end of the
control horizon. The regulator then reduces to the one dis-

Ž .cussed by Rawlings and Muske 1993 . In the following two
examples we show the closed-loop response of the heavy oil
fractionator with the output target change and disturbance
described in Example 2.

Example 5. Hea®y Oil Fractionator: Closed-Loop Response
Subject to Output Target Change. Consider the closed-loop
response of the heavy oil fractionator described in Example 2
subject to the output target change described in Eq. 24. Fig-
ure 6 shows the closed-loop response subject to the output
target change. As discussed in Example 2, the input con-
straints prevent the system from attaining the desired target
y at steady state. Instead the controller seeks a target that

Ž .causes the top draw u to saturate at its upper limit. Figure1
6 shows that, after initially saturating, the top draw asymptot-
ically approaches its upper limit as the closed-loop system
settles at its specified steady-state values. While the open-loop
trajectory of the controller specifies that the top draw satu-
rates at ks NU, the receding horizon aspect of the regulator
allows for an asymptotic approach. This feedback effect di-
minishes the performance degradation due to the boundary
projection in the actual closed loop.

Example 6. Hea®y Oil Fractionator: Closed-Loop Response
Subject to a Disturbance. Consider the closed-loop response
of the heavy oil fractionator described in Example 2 subject
to the disturbance described in Eq. 25. An output disturb-

Žance model was used to detect the disturbance Muske and
.Rawlings, 1993 . Figure 7 displays the closed-loop response

subject to the disturbance. To reject the disturbance, the con-
Ž .troller seeks an input target that causes the top draw u to1

saturate at its lower limit. Once again, Figure 7 shows that
the top draw asymptotically approaches its lower limit as the
closed-loop system settles at its specified steady state. In ad-
dition, the disturbance causes the output constraints to be-
come infeasible. In order to handle the output infeasibilities
in the regulator, the constraints were relaxed using a l rl 2

1 2

Figure 6. Closed-loop response for Example 5.

exact penalty in the manner described by Scokaert and Rawl-
Ž .ings 1996 . The output constraints were relaxed with an l1

2 wpenalty of zs1,000) e and a l penalty of Zs I, where es 12
xT. . . 1 .

Acti®e State Constraints. In an analogous manner, the
problem of handling state constraints can be reformulated as
finding the linear feedback controller that minimizes the infi-

Ž .nite horizon quadratic objective Eq. 14 subject to the con-
straints

w s Aw q B® , 32aŽ .kq1 k k

Cw s0. 32bŽ .k

Unlike the previous situation, there does not always exist a
linear feedback regulator that satisfies the state constraints
for all k. For such a regulator to exist, we require that the

Ž . Ž .null space of C is A, B invariant. The definition of A, B
invariance along with the sufficient conditions for the exist-
ence of a regulator is given in Appendix B. The condition of
Ž .A, B invariance essentially requires that there are enough
degrees of freedom in the input to constrain the evolution of
the system to a particular subspace. A system whose uncon-
trollable modes are observable in the null space of C is not
Ž .A, B invariant if the associated basis for the uncontrollable
modes is not contained completely in the null space of C.

Ž .Assuming that the null space of C is A, B invariant, then
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Figure 7. Closed-loop response for Example 6.

there exists a linear feedback law

C® s L w q NN p 33Ž .k C k BC k

Cthat constrains the system to the null-space of C for all p .k
The details of the construction are given in Appendix B. We
obtain the optimal feedback law from the following expres-
sion

TK , P s KK Aq BL , BNN , Qq L RL q2 ML ,Ž .Ž . ŽC C CB C C C

T TNN R NN , MNN q L R NN 34Ž ..CB CB CB C CB

Ž .by substituting in for ® with the feedback law Eq. 33 . Ifk
Ž .Aq BL , BNN is stabilizable, thenC CB

DK s NN K . 35Ž .CB C

Otherwise, it is necessary to zero the unstable and uncontrol-
lable modes at ks NU in an analogous manner to the input
constrained regulator. The boundary approximation to Eqs.
17]18 is obtained by adding the constraint

Cw s0, 36Ž .N

and calculating P using Eq. 34. In the following two exam-

ples, we illustrate that a system must possess excess degrees
of freedom in the input for a stabilizing boundary approxima-
tion.

Example 7. Output Constrained Regulator with No Excess
Degrees of Freedom. Consider the regulation of the follow-
ing nonminimum phase system

sy3
y s s u s 37Ž . Ž . Ž .23s q4 sq2

sampled at a frequency of 10 Hz subject to the constraint
y G0 and the tuning parameters Qs1 and Rs1. One statek
space realization for this system in discrete time is

0.9968 0.0935 0.0048As , Bs , 38aŽ .
y0.0623 0.8721 0.0935

w xCs y1.0000 0.3333 . 38bŽ .

Ž .The system is A, B invariant with respect to the null space
of C. However, the closed-loop system with the invariant
feedback law

w xK s 38.5608 y7.4723 39Ž .C

is unstable. Since there are no additional degrees of freedom,
it is necessary to enforce the endpoint constraint w s0 forN
the boundary approximation. Figure 8 shows a comparison of

Figure 8. Comparison of closed-loop responses for
Example 7.
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the closed-loop response for the constrained regulator with
Ns10 and the unconstrained regulator with an initial state

w xTdisturbance of y1, 2 . While the output response for the
constrained regulator displayed in Figure 8 appears better
than the unconstrained output response, notice that the in-
put action is far more aggressive for the constrained regula-
tor.

Example 8. Output Constrained Regulator with Excess De-
grees of Freedom. Reconsider the regulation of the system in
Example 7 with an additional input

sy3 2
y s s u s q u s 40Ž . Ž . Ž . Ž .1 22 23s q4 sq2 3s q4 sq2

sampled at a frequency of 10 Hz subject to the constraints
< <u F6 and y G0 and the tuning parameters Qs1 and Rsk k
I.

One state-space realization for this system in discrete time
is

0.8877 y0.0346 y0.0827 0.0395As , Bs ,
0.1194 0.9812 0.0212 0.0026

w xCs 0 1.2472 .

Ž .The system is again A, B invariant with respect to the null
space of C. In contrast, with the addition of the extra degree
of freedom, the closed-loop system with the invariant feed-
back law

y5.5486 y45.5972K s 41Ž .C y0.6805 y5.5921

is stabilizable. Figure 9 shows a comparison of the closed-loop
responses for the constrained regulator with Ns9 and the
unconstrained regulator subject to the initial condition is x0

w xTs 1, y3 . Figure 10 shows the phase portraits of the
closed-loop responses for the constrained and unconstrained
regulator. Once again, the output response for the con-
strained regulator appears superior to the unconstrained out-
put response. Notice, however, that the input is far more ag-
gressive for the constrained regulator.

The combined problem of both state and input constraints
is solved by reconsidering Eq. 34 after making the following
substitutions

TB§ BNN , R§ NN R NN , M§ MNN . 42Ž .D D D D

It is not difficult to prove that the proposed control algo-
rithm is asymptotically stable. Convergence of the regulator
is straightforward to demonstrate using standard arguments
Ž Ž ..for example, see Keerthi and Gilbert 1988 . Establishing
nominal stability is more subtle than the usual arguments. In
particular, the definition of stability needs to be adjusted to
account for perturbations only in the feasible region.

Concluding Remarks
The main contribution of this article has been to establish

techniques for handling inequality constraints active at steady

Figure 9. Comparison of closed-loop responses for
Example 8.

state, a case that has not been treated in previous model pre-
Ž .dictive control MPC theory. Through a series of examples,

we show how this case is significant in applications.
As an alternative to the approach outlined in this article,

one could consider moving any inequality constraint line that
passes through the origin a small distance away from the ori-
gin, after which existing theory would apply. Choosing this
distance is problematic, however. If a small distance is cho-
sen, the output admissible set may be small, and the required
horizon may be large and the on-line computation is ineffi-
cient. If a somewhat larger distance is chosen, the economic

Figure 10. Closed-loop phase portraits for Example 8.
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performance of the plant suffers because the steady-state tar-
get is no longer close to the true plant constraints. Of course,
one could always avoid the issue by using a finite horizon and
terminal constraint, but that choice is not as good as the ap-
proach outlined here.
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Appendix A: Proof of Uniqueness for Target
Calculation

Without loss of generality, we ignore the inequality con-
straints on the decision varaibles and consider only the con-
straints given by Eq. 10a.

Ž .Theorem 1. If Q , R )0, q )0, and A,C is de-ss ss ss
tectable, then the solution to Eq. 9 subject to the constraints
given by Eq. 10a is unique.

Ž .Proof. Using the Hautus lemma Sontag, 1990 , de-
tectability implies the following rank condition

lIy A
Drank HHs s n A1Ž .Cž /C

for all lgC with magnitude greater than or equal to 1. It is
sufficient to consider only the extended Hautus matrix HH
with ls1. Since rank HHs n, HH has full column rank. It
then follows that x is uniquely determined from the follow-ss
ing equation

B u q dŽ .ss

yy py hy tŽ .HH x s A2Ž .1s s

yy pq hy tŽ .2

where t and t are positive slacks for the inequality con-1 2
Ž .straints Eq. 10a . If x / x is another solution, then theress ss

Ž . Žnecessarily exists another solution u , hy t / u , hyss �1,24 s s
. < <t . Since the positive slack accounts for hs yyCx y p ,�1,24 s s

Ž .h is uniquely determined by hy t . However, since the�1,24
objective function is a strictly convex function of u and h,ss
x cannot be another solution without contradicting optimal-ss
ity.

Remark 1. An additional consequence of a unique target
is that the target calculation is stable to perturbations. Since
the quadratic program is continuous in a point-to-set topol-
ogy, uniqueness of the target guarantees that the solution is

Ž .continuous in a point-to-point topology Berge, 1963 .

Appendix B: State Constrained Linear Quadratic
Regulator

In this section, we describe sufficient conditions for the
construction of a state constrained linear feedback controller.

Ž .The key concept is A, B invariance with respect to the null
Ž .space of C. For further details of A, B invariance with re-

Žspect to an arbitrary subspace see Section 4.3 of Sontag,
.1990 .
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Ž .Definition 1. The null space of C is A, B invariant if
Ž .and only if ;w, ' ® such that Cws0 implies C Awq B® s0.

Ž .Theorem 2. The null space of C is A, B invariant if and
only if there exists a linear feedback control law that con-

Ž .strains the evolution of A, B to the subspace Cws0.
Ž .The sufficiency is immediate Sontag, 1990 . Before prov-

ing necessity of Theorem 2, we first derive necessary and suf-
Ž .ficient conditions for the null space of C to be A, B invari-

ant. Let NN be an orthonormal basis for the null-space of CC
T Ž .and let z sy NN w. We recast the constraints Eq. 32 asC

CANN z sCB®. B1Ž .C

Ž .Let RR denote the range space of ? .Ž ? .
Ž .Lemma 1. The null space of C is A, B invariant if and

only if RR : RR .C ANN C BC

Proof. Suppose first that RR : RR . It follows di-C ANN C BC

rectly that ;z , ' ® such that CANN z sCB® since the columnC
space of BC contains the columns space of CANN . Hence, CC

Ž .is A, B invariant as claimed.
Ž .Now, suppose that the null space of C is A, B invariant.

Then ;z , ' ® such that CANN z sCB®. Therefore, by defini-C
tion, RR : RR as claimed.C ANN C BC

Let O and O denote the orthonormal bases for theA B
columns spaces of CANN and CB respectively.C

Ž .Corollary 1. The null space of C is A, B invariant if and
Ž T .only if O O y I O s0.B B A

Proof. An equivalent condition for RR : RR is thatC ANN C BC

;z , ' ® such that O z sO ®. Solving for ® yields ®sOTO z .A B B A
Direct substitution yields the desired result.

Proof of Theorem 2. We construct a feedback law that
constrains w to the null-space of C by decomposing the op-
erator CB into its range space and null spaces yielding ®s

q C CŽ .y CB CAwq NN p , where p is the input projected toCB
qŽ .the null space of CB and ? denotes the pseudo-inverse. If

D qŽ .K s y CB CA, then we construct the linear feedback lawC
C®s Kwq NN p as claimed.CB

CRemark 2. The vector p represents the excess degrees of
freedom in the inputs with respect to the constraint Cws0.
Since the control law constrains the system to the subspace

CCws0 for all p , we construct the optimal state constrained
regulator by first constructing a linear quadratic regulator K

Ž .for the system Aq BK , BNN . The full state constrainedC CB
regulator is obtained by combining the two linear regulators
as follows

®s K q NN K w. B2Ž .Ž .C CB
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